Kelly L Lurz, OMS IV; Adrianna M Darwish, OMS IV; Kevin D. Treffer, DO, FACOFP

INTRODUCTION
Urolithiasis affects approximately 1 in 11 people, with men being affected more frequently than women (10.6% versus 7.1%, respectively). The most common cause of urinary calculus is dehydration. Stones also have a propensity to form when urinary levels of calcium, oxalate, cystine, and/or uric acid are elevated. Patients with urolithiasis commonly present with exquisite flank pain, hematuria, difficulty urinating, groin pain, nausea, and vomiting. Differential diagnoses are vast and various, organ, nervous, and muscular pathologies must be considered. Symptomology and physical exam findings help guide diagnosis, but the definitive diagnosis is obtained with imaging. Computed tomography (CT) without contrast is the best modality for identifying giuntinatory (GI) stones, with ultrasound and X-ray also being helpful, yet inferior. Stones may be managed with medical expulsive therapy (MET) or surgery. Many factors contribute to treatment choice including the patient’s pain, vitals, and size of the stone. Psoas syndrome is a pain condition caused by injury to the psoas musculature that may have associated chronic musculoskeletal effects. In our case report, a 35-year-old male who develops a chronic psoas syndrome secondary to an episode of urolithiasis and ureteral stent placement is subsequently treated with long-term osteopathic manual medicine (OMM). Our case suggests that urolithiasis may be associated with the development of psoas syndrome—a condition that may be amenable to OMM. The specific treatment modalities discussed may be utilized to decrease symptomatology for patients presenting with similar findings.

REPORT OF CASE
A 35-year-old Caucasian male presented to the emergency department with sudden onset left flank pain that radiated to his left groin. The pain began after voiding, 30 minutes prior to arrival, and was accompanied by nausea and vomiting. The patient had just finished mowing the lawn when the pain started. The pain remained constant, sharp, and severe. He denied any recent fevers, chills, hematuria, dysuria, perineal discharge, testicular pain, or heavy lifting. Past medical history was only significant for an episode of epididymitis 15 years prior. Surgical history was unremarkable. Family history revealed cardiac disease, but no GU diagnoses. He was afibrile, tachycardic, and hypertensive. On physical exam the patient was in distress due to pain and had marked left flank pain on palpation. Labs revealed leukocytosis (13 x 10^9/L), a creatinine of 1.1 mg/dl, and a normal serum uric acid. Urinalysis was deferred due to the patient’s inability to void. An ultrasound of the kidneys and ureters displayed moderate left hydronephrosis, a dilated left proximal ureter, and a possible stone in the distal left ureter. These findings were confirmed with an intravenous pyelogram, which revealed a 2.2 cm obstructing left ureteral calculus. The patient had a left ureteral stent placed the following day, with definitive stone treatment seven days later. In the interim, he sought medical attention for a new type of pain that developed in the left lower back with radiation to his left posterior belt line and left groin. The pain was described as episodic, severe, and cramp-like. Physical exam unveiled an inability to stand fully erect and tenderness to palpation deep within the left iliac fossa. L1-L5 were side-bent left, with a segmental dysfunction at L1 of FRlSl. His left hip was significantly restricted to extension. He was diagnosed with an acute psoas syndrome which was successfully treated with combination therapy of OMM, anti-inflammatories, and muscle relaxants. Over the course of the next thirty years, he has presented with thirteen recurrent episodes of acute-on-chronic psoas syndrome; a frequency of approximately one episode every one and a half years. Almost every recurrent episode was professionally evaluated with appropriate laboratory and imaging tests to rule out urolithiasis or other possible differentials. Each of the thirteen episodes were diagnosed solely as acute-on-chronic psoas syndrome. Every episode has been amenable to serial OMM treatments and combination therapy of anti-inflammatories and muscle relaxants. Several of the OMM modalities utilized in our patient’s care are discussed later in this article.

DISCUSSION
The psoas major muscle originates from the transverse processes of L1-L5, the lateral bodies of T12-L5, and the associated intervertebral discs. The muscle inserts distally on the lesser trochanter. Nervous supply to the psoas muscle is derived from the ventral rami of L1-L4. The ureter receives nervous supply from nearby autonomic plexuses, which utilize many of the same lumbar afferents and efferents as the psoas. Each ureter lies directly on the anterior surface of the respective psoas musculature. Therefore, it is reasonable to theorize that inflammation generated within our patient’s ureter resulted in subsequent irritation of the underlying psoas musculature leading to psoas syndrome. Although the etiology of most cases of acute or chronic psoas syndrome are multifactorial and organic in origin, it is likely that urolithiasis and stent irritation could lead to psoas syndrome as well. This report adds to the current literature as it is the first to make a direct link between the latter.

Many OMM techniques can be applied to the treatment of psoas syndrome. The modalities discussed here are the mainstays of our treatment approach and include a thoracoabdominal diaphragm release, psoas muscle energy (Figure 1) lumbar muscle energy (Figure 2), and iliopsoas counterstrain. The thoracoabdominal diaphragm has inferiorly spanning tendinous arches that directly cover the superior aspects of the psoas musculature, as well as cranial attachments to the upper lumbar vertebrae. This intimate relationship often leads to dysfunction of the diaphragm secondary to psoas injury. We utilize a breathing-guided integrated neuromuscular release to improve diaphragmatic excursion. The technique is performed with the patient in the supine position; the clinician’s hands wrap broadly around ribs 6-10 bilaterally. The indirect barriers of all intervertebral discs. The muscle inserts distally on the lesser trochanter. Nervous supply to the psoas muscle is derived from the ventral rami of L1-L4. The ureter receives nervous supply from nearby autonomic plexuses, which utilize many of the same lumbar afferents and efferents as the psoas. Each ureter lies directly on the anterior surface of the respective psoas musculature. Therefore, it is reasonable to theorize that inflammation generated within our patient’s ureter resulted in subsequent irritation of the underlying psoas musculature leading to psoas syndrome. Although the etiology of most cases of acute or chronic psoas syndrome are multifactorial and organic in origin, it is likely that urolithiasis and stent irritation could lead to psoas syndrome as well. This report adds to the current literature as it is the first to make a direct link between the latter.

Many OMM techniques can be applied to the treatment of psoas syndrome. The modalities discussed here are the mainstays of our treatment approach and include a thoracoabdominal diaphragm release, psoas muscle energy (Figure 1) lumbar muscle energy (Figure 2), and iliopsoas counterstrain. The thoracoabdominal diaphragm has inferiorly spanning tendinous arches that directly cover the superior aspects of the psoas musculature, as well as cranial attachments to the upper lumbar vertebrae. This intimate relationship often leads to dysfunction of the diaphragm secondary to psoas injury. We utilize a breathing-guided integrated neuromuscular release to improve diaphragmatic excursion. The technique is performed with the patient in the supine position; the clinician’s hands wrap broadly around ribs 6-10 bilaterally. The indirect barriers of all intervertebral discs. The muscle inserts distally on the lesser trochanter. Nervous supply to the psoas muscle is derived from the ventral rami of L1-L4. The ureter receives nervous supply from nearby autonomic plexuses, which utilize many of the same lumbar afferents and efferents as the psoas. Each ureter lies directly on the anterior surface of the respective psoas musculature. Therefore, it is reasonable to theorize that inflammation generated within our patient’s ureter resulted in subsequent irritation of the underlying psoas musculature leading to psoas syndrome. Although the etiology of most cases of acute or chronic psoas syndrome are multifactorial and organic in origin, it is likely that urolithiasis and stent irritation could lead to psoas syndrome as well. This report adds to the current literature as it is the first to make a direct link between the latter.
Recurrent Psoas Syndrome Secondary to Urolithiasis and Indwelling Ureteral Stent

Kelly L Lurz, OMS IV; Adrianna M Darwish, OMS IV; Kevin D. Treffer, DO, FACOFP

1. Kansas City University of Medicine and Biosciences College of Osteopathic Medicine

INTRODUCTION
Urolithiasis affects approximately 1 in 11 people, with men being affected more frequently than women (10.6% versus 7.1%, respectively).1 The most common cause of urinary calculi is dehydration. Stones also have a propensity to form when urinary levels of calcium, oxalate, cystine, and/or uric acid are elevated.1

Patients with urolithiasis commonly present with exquisite flank pain, hematuria, difficulty urinating, groin pain, nausea, and vomiting. Differential diagnoses are vast and vary, depending on the age, sex, race, and anatomy of the respective organ, nervous, and muscular pathologies must be considered.

Symptomatology and physical exam findings help guide diagnosis, but the definitive diagnosis is obtained with imaging. Computed tomography (CT) is the best modality for identifying genitourinary (GU) stones, with ultrasound and X-ray also being helpful, yet inferior.1 Stones may be managed with medical expulsive therapy (MET) or surgery. Many factors contribute to treatment choice including the patient’s pain, vitals, and size of the stone. Psoas syndrome is a pain condition caused by injury to the psoas musculature that may have associated chronic musculoskeletal effects. In our case report, a 35-year-old male who develops a chronic psoas syndrome secondary to an episode of ureterolithiasis and ureteral stent placement is subsequently treated with long-term osteopathic manual therapy (OMT). Our case suggests that urolithiasis may be associated with the development of psoas syndrome—a condition that may be amenable to OMT.

The specific treatment modalities discussed may be utilized to decrease symptomatology for patients presenting with similar findings.

REPORT OF CASE
A 35-year-old Caucasian male presented to the emergency department with sudden onset left flank pain that radiated to his left groin. The pain began after mowing the lawn when the patient was bent over. The patient admitted to a recent febrile illness with chills, nausea, and vomiting. The patient had just finished mowing the lawn when the pain started. The patient remained constant, sharp, and severe. He denied any recent fevers, nausea, vomiting or chills, hematuria, dysuria, penile discharge, testicular pain, or heavy discharge.

On physical exam the patient was afebrile, tachycardic, and hypertensive. On palpation. Labs revealed leukocytosis (13 x 10⁹/L), a creatinine of 1.1mg/dL, and a normal serum uric acid. Urinalysis was deferred at this time, but the patient was diagnosed with an acute psoas syndrome which was successfully treated with combination therapy of OMM, anti-inflammatories, and muscle relaxants. Over the course of the next thirty days, he had presented with thirteen recurrent episodes of acute-on-chronic psoas syndrome; a frequency of approximately one episode every one and a half years. Almost every recurrent episode was professionally evaluated with appropriate laboratory and imaging tests to rule out urolithiasis or other possible differentials. Each of the thirteen episodes were diagnosed solely as acute-on-chronic psoas syndrome. Every episode has been amenable to serial OMM treatments and combination therapy of anti-inflammatories and muscle relaxants. Several of the OMM modalities utilized in our patient’s care are discussed later in this article.

DISCUSSION
The psoas major muscle originates from the transverse processes of L1-5, the lateral bodies of T12-L5, and the associated intervertebral discs. The muscle inserts distally on the lesser trochanter. Nervous supply to the psoas muscle is derived from the ventral rami of L1-L4. For illustrative purposes, we have placed the patient in the prone position to demonstrate the muscle anatomy and function. To avoid causing discomfort, the prone position is not maintained during treatment.

Urolithiasis affects approximately 1 in 11 people, with men being affected more frequently than women (10.6% versus 7.1%, respectively).1 The most common cause of urinary calculi is dehydration. Stones also have a propensity to form when urinary levels of calcium, oxalate, cystine, and/or uric acid are elevated.1

In addition, psoas syndrome can present secondary to a variety of viscerosomatic reflexes like urolithiasis, appendicitis, prostatitis, and salpingitis. Osteopathic manipulation can be used to aid in the treatment of psoas syndrome. We present the first reported case of a patient with chronic psoas syndrome secondary to urolithiasis and an indwelling ureteral stent, along with useful treatment options for practitioners.

CORRESPONDENCE:
Kevin D. Treffer, DO, FACOFP | ktreffer@kcumb.edu

REFERENCES:

FIGURE 2: Prone positioning for muscle energy of the hypertonic psoas muscle. The left lower back with radiation to his left posterior belt line and left groin. The pain was described as episodic, severe, and cramp-like. Physical exam revealed an inability to stand fully erect and tenderness to palpation deep within the left iliac fossa. L1-L5 were side-bent left, with a segmental dysfunction at L1 of PRLS. His left hip was significantly restricted to extension. He was diagnosed with an acute psoas syndrome which was successfully treated with combination therapy of OMM, anti-inflammatories, and muscle relaxants. Over the course of the next thirty days, he has presented with thirteen recurrent episodes of acute-on-chronic psoas syndrome; a frequency of approximately one episode every one and a half years. Almost every recurrent episode was professionally evaluated with appropriate laboratory and imaging tests to rule out urolithiasis or other possible differentials. Each of the thirteen episodes were diagnosed solely as acute-on-chronic psoas syndrome. Every episode has been amenable to serial OMM treatments and combination therapy of anti-inflammatories and muscle relaxants. Several of the OMM modalities utilized in our patient’s care are discussed later in this article.

Many OMM techniques can be applied to the treatment of psoas syndrome. The modalities discussed here are the mainstays of our treatment approach and include a thoracoabdominal diaphragm release, psoas muscle energy (Figure 1) lumbar muscle energy (Figure 2), and iliopsoas counterstrain.

The thoracoabdominal diaphragm has inferiorly-spanning tendinous arches that directly cover the superior aspects of the psoas musculature, as well as crural attachments to the upper lumbar vertebrae. This intimate relationship often leads to dysfunction of the diaphragm secondary to psoas injury. We utilize a breathing-guided integrated neuromuscular release to improve diaphragmatic excursion. The technique is performed with the patient in the supine position; the clinician’s hands wrap broadly around ribs 6-10 bilaterally. The indirect barriers of all diaphragmatic planes are engaged and held by the clinician while the patient maintains the phase of their respiratory cycle that is deemed the least resistant. This process may be repeated several times until restoration of diaphragmatic motion occurs.
Figure 1 (See page 37) displays the prone positioning for muscle energy of the hypertonic psoas. Approach this technique with care, as many patients in the acute phase may be unable to tolerate aggressive lengthening of their psoas musculature.

Figure 2 (See page 37) represents muscle energy for a side-bending dysfunction of the lumbar spine. The counterstrain point for the iliopectineus lies deep within the iliac fossa. Treatment of this point requires the patient to be positioned supine with both hips and knees passively flexed to 90°, ankles crossed, and thighs externally rotated. Maintaining correct positioning will shorten the psoas muscle fibers effectively resetting the facilitated segment, which may manifest as reduction in pain experienced by the patient.

Figure 3 (See page 37) displays the pre- and post-treatment sagittal findings from our patient. The post-treatment image on the right demonstrates lengthening of the psoas musculature with resultant improvement in erect posture.

CONCLUSION

Urolithiasis may result in inflammation of the ureter with subsequent irritation of the underlying psoas musculature, leading to psoas syndrome. In this case report, our patient demonstrates not only an acute episode, but also recurrent psoas syndrome episodes secondary to a ureteral calculus and an indwelling ureteral stent. When caring for patients with a history of urolithiasis and chronic pain, it is important for physicians to consider the diagnosis of psoas syndrome. OMM may be utilized to reduce patient symptomatology and improve somatic dysfunction related to psoas muscle spasm in both the acute and chronic settings.

AUTHOR DISCLOSURES:
No relevant financial affiliations

REFERENCES:

CALENDAR OF EVENTS

2019

MARCH 21 - 24, 2019
ACOFP 56th Annual Convention & Scientific Seminars
Chicago, Illinois
www.acofp.org

JANUARY 18 - 20, 2019
Midwinter Osteopathic Family Practice Conference
Iowa Chapter the ACOFP
Des Moines, Iowa
www.ioma.org

JANUARY 23-26, 2019
PCOM 30th Annual Osteopathic Winter Seminar
Clearwater Beach, Florida
www.pcomsociety.com

JANUARY 24 - 27, 2019
Missouri Winter Family Medicine Update
Missouri Society of the ACOFP
Independence, Missouri
www.maofp.org

JANUARY 24 - 27, 2019
MAOFP’s Midwinter Family Medicine Update
Bellaire, Michigan
www.maofp.org

FEBRUARY 1 - 3, 2019
ACOFP Future Leaders Conference
Phoenix, Arizona

JULY 31 - AUGUST 4, 2019
ACOFP/ACA’43 Scientific Medical Seminar
Anaheim, CA
www.acofpca.org

OCTOBER 25 - 28, 2019
OMED’19
AOA/ACOFP Osteopathic Medical Conference & Exposition
Baltimore, MD
www.acofp.org

CME Resource: Osteopathic Family Physician Offers 2 Hours of 1-B CME
ACOFP members who read Osteopathic Family Physician can receive two hours of Category 1-B continuing medical education credit for completing quizzes in the journal. Visit the eLearning Center at www.acofp.org to access the quizzes.